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A B S T R A C T

This paper proposes a novel business model for on-demand package shipment services using
drones, and evaluates different modeling and solution approaches for the drone routing problem
that underpins the service operation. In the proposed service, customers’ shipment orders of ar-
bitrary origins and destinations, payload weights and bid values are collected every five minutes,
and available drones from multiple depots are then dispatched to fulfill a subset of these orders
in a way to maximize profit. A drone path starts from a depot, serves one or more customer
orders in sequence, and ends at a depot for battery recharging, which incurs a fixed cost. Two
mixed integer programming (MIP) formulations are presented to model the drone dispatch and
routing problem. To improve solution efficiency, three computational approaches, including
two column generation based algorithms and a brute-force path enumeration algorithm, are
developed and compared. Computational experiments suggest, somewhat surprisingly, that
the brute-force approach is the most effective and most scalable one, outperforming other
alternatives by a substantial margin in both computing time and solution quality. Furthermore,
an optimization–simulation framework is proposed to assess the system performance over
a long horizon that spans multiple dispatch periods without complicating the optimization
model. Using the simulation framework, useful managerial insights including the effects of
battery capacity, wind condition and computing capability on the fleet dispatch operation, are
generated, which will guide real-world implementations of the new business model.

1. Introduction

Unmanned aircraft (UA), or drones, are able to transport light-weight goods for a short distance faster and more economically
than other means. Drone-based on-demand delivery is envisioned by many to be a promising new business model. Example services
include delivering restaurant meals to customers, shipping urgently needed items from warehouses to shops, and transporting blood
samples from clinics to test labs, etc.

Through a National Science Foundation (NSF) supported Innovation Corps (I-Corps) project, our team conducted extensive market
readiness research in 2020 with an attempt to commercialize the drone routing technologies developed earlier, see Liu (2019b,a,
2020). We interviewed more than 100 people that were hypothesized to play key roles in the drone delivery ecosystem, if one was
established. In the project, we have identified a number of barriers to a profitable business model, one of which was the relatively
high cost of Lithium Polymer (LiPo) battery. LiPo battery is the most widely used power source for small civilian drones. While the
cost of electric energy consumed in a short trip is almost negligible, the trip’s share of the battery’s acquisition and maintenance
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costs is not. Barring a new breakthrough in battery technology (or alternative power source technology), efficient fleet-level battery
asset management will be the key factor that determines the bottom line of a drone-based delivery business.

In this paper, we propose a novel operations model for an on-demand package shipment service using drones, in which the
batteries’ capacity and life cycle costs are explicitly considered. The key operational decisions, i.e., which shipment orders to
accept, which drones to dispatch, and what route for each drone to follow, are formulated into a mixed integer programming
(MIP) model. The model is to be solved periodically in short intervals of time to support continuous operations. With effective
preprocessing and transformation of input data, the model formulation is compact and intuitive, yet, even the state-of-the-art
commercial software such as CPLEX is unable to solve reasonably sized instances within the desired time frame. To overcome this
challenge, we investigate the path-based formulation along with different solution algorithms, including a parallel path enumeration
algorithm, the column generation approach and a heuristic improvement of the column generation approach. While all these methods
are able to substantially enhance the solvability of the problem as compared to the original compact formulation, the approach based
on the parallel, exhaustive path enumeration algorithm is shown to be the most computationally viable. To aid the validation of the
business model, we further integrate the routing optimization model in a simulation framework with which interested entrepreneurs
and investors can simulate the daily operations and conduct what-if analyses with customized design parameters. As usage examples,
the effects of battery capacity and wind speed and direction on the operational efficiency are explored in a simulation case study.

The remainder of the paper is organized as follows. In Section 2, the related literature is reviewed and our contributions are
highlighted. Section 3 describes the business model and operation specifications. In Section 4, the battery consumption model and
drone routing model are formulated. Section 5 develops the path-based formulation, the column enumeration algorithm and two
column generation based algorithms for solving the drone routing problem. Section 6 proposes a simulation approach for addressing
multi-period, continuous operation scenarios. Section 7 presents validation experiments and a simulation case study. Section 8
concludes the paper with pointers for future research.

2. Literature review

Drone-enabled delivery operations mainly fall into two categories, the drone-only model and the truck–drone tandem model.
In the drone-only model, drones are the sole transporting vehicles operated by the service provider. In the truck–drone tandem
model, drones are launched from conventional delivery trucks, and the two types of vehicles coordinate their routes to deliver the
truckload of packages to geographically dispersed customers. Both models have company-backed operational prototypes in reality.
For instance, Alphabet Wing has been running drone delivery trials in Christiansburg, Virginia, since 2019, and UPS, in partnership
with a startup called Workhorse, has demonstrated the concept of launching a small package-delivery drone from the roof of a
conventional delivery truck. However, most prototypes were only demonstrated in small-scale trial runs, and the actual commercial
value gleaned from these trials has been scantly disclosed.

The truck–drone tandem model has attracted much interest from the operations research community, partly because the
coordination and synchronization between the two types of vehicles bring about additional challenges upon the classic, yet-hard,
traveling salesman problem (TSP) and vehicle routing problem (VRP). The pioneering work along this line includes Murray and Chu
(2015) and Agatz et al. (2018), which first proposed the concepts of flying sidekick traveling salesman problem (FSTSP) and of the
traveling salesman problem with drones (TSP-D), respectively. Subsequently, a large volume of follow-on research has emerged.
Prominent works include Yurek and Ozmutlu (2018), which decomposed the TSP-D into two stages and presented an iterative
algorithm that solved the problem faster than CPLEX, Dell’Amico et al. (2019), which improved the solvability of FSTSP via a
better formulation and heuristics, Roberti and Ruthmair (2021) which improved the solvability of TSP-D via a compact formulation
and novel algorithm design, and Murray and Raj (2020), which extended the FSTSP by using multiple drones to aid the truck to
complete the TSP tour. Jeong et al. (2019) incorporated the drone’s energy consumption and no-fly zone considerations into the
FSTSP framework and developed a novel search heuristic that performed competitively against several well-known metaheuristics.
Truck–drone tandem has also been modeled as VRP variants. Wang and Sheu (2019) provided a path-based VRP model for a
delivery system consisting of multiple trucks, drones, and docking nodes, and proposed a branch-and-price (i.e., column generation)
algorithm for its solution. Wang et al. (2017) developed theoretical bounds for ratios of the total delivery time among different
truck–drone delivery options and the insights were subsequently extended in Poikonen et al. (2017). Wang et al. (2020) proposed a
bi-objective variant of the TSP-D problem to attain a compromise between the operational cost and completion time, and developed
an improved non-dominated sorting genetic algorithm to solve the problem. Another form of truck–drone coordination was modeled
through operating a mixed fleet — the drones would not be carried by trucks and both types of vehicles would deliver packages
separately. Ulmer and Thomas (2018) proposed a same-day delivery service using a mixed fleet of trucks and drones. For each
randomly arriving customer order, the service provider must decide whether or not the order can be served and whether a truck
or a drone should perform the delivery. A Markov decision process was employed to find the optimal policy that maximizes the
expected number of orders served in a day. Khoufi et al. (2019) provided a survey of recent TSP variants involving drones, and Chung
et al. (2020) reviewed optimization models for a broader scope of applications that involved drone-truck tandem operation.

The drone-only model has been frequently formulated as variants of the vehicle routing problem. Most works acknowledged
the carrying capacity and flight distance limitation, and featured innovative treatments. Dorling et al. (2017) formulated the drone
delivery problem as a multi-trip vehicle routing problem (MTVRP) in which a single drone at a depot makes multiple trips to
deliver to a set of customer sites. A highlight of this formulation was its explicit treatment for the relationship between the drone’s
energy consumption and the total takeoff weight. The resulting MIP with big-M constraints was challenging to solve, and simulated
annealing algorithms were implemented for approximate solutions. Cheng et al. (2020) extended the MTVRP model by retaining
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the more descriptive nonlinear relationship between a trip’s energy consumption and its payload and travel distance. The nonlinear
constraints were then approximated in an iterative solution process by linear cuts. Apart from the cost-saving potential, service
agility has also been emphasized as an advantage of drone-enabled deliveries. The latter aspect is typically manifested through
various forms of dynamism and stochasticity in real-world scenarios, such as the on-demand meal delivery services, see, e.g., Reyes
et al. (2018), Liu (2019a). In particular, Reyes et al. (2018) characterized the meal delivery problem as having structural features
such as ‘‘multiple pick-up points (restaurants)’’ and ‘‘dynamic order arrivals’’, among other features pertinent mainly to manned
delivery systems (e.g., varying capacity throughout the day in the form of courier shifts). Both of the mentioned features are handled
in this paper. Liu (2019a) used a comprehensive MIP to characterize the on-demand meal delivery service, and proposed to drive the
practical operations by solving the MIP in a rolling-horizon framework. In that model, time was discretized while spatial quantities
(e.g., the 2D velocity and location of drones) were treated as continuous variables. The author suggested as future work an alternative
approach for addressing the multiperiod dynamic vehicle routing problem, i.e., ‘‘in each optimization period, dynamically construct
a new graph on the Euclidean plane with nodes being the exact coordinates of relevant entities (i.e., orders and vehicles) at the
time and arcs representing the straight-line distances between pairs of entities’’. The current work implements that idea. Poikonen
and Campbell (2020) in their ‘‘future directions’’ article called for new business models of drone delivery that are potentially more
fruitful than the widely studied warehouse-to-customer model. The point-to-point 3rd-party logistics (3PL) model proposed herein
to some extent answers the call.

As with many other research works in the emerging field, we are simultaneously innovating a new business model and developing
a mathematical model to characterize it, thus there is not a clear-cut lineage for the present work. Being an application of the
mixed integer programming technique to a specific business case, our model contains features from several well-known problem
categories. We highlight three points here. (1) Each shipment request comes in the form of an origin–destination segment that the
assigned drone needs to follow, drawing resemblance to the arc routing problem (ARP), see Corberán et al. (2020) for a latest
survey and Campbell et al. (2018) for an example of ARP with drones. However, in our model we do not need to treat the origin
and destination of a shipment request as separate nodes in the network. Instead, an arc-like request can be collapsed into a single
node via data preprocessing, which simplifies the mathematical program. A similar treatment can be found in Riera-Ledesma and
Salazar-González (2017) with a more elaborate explanation. (2) As with any other service system that requires dynamic matching
between limited supply and random demand (e.g., the taxi market), there is no guarantee that all demands can be satisfied within
the desired time frame. Some rules (or modeling assumptions) are needed to handle demand overflow. To this end, we propose
a demand bidding mechanism in which each customer makes an offer for her shipment request, and it is up for the supply side,
i.e., the fleet manager, to decide which requests to fulfill via solving a profit maximization problem. The fleet routing aspect of the
problem therefore resembles a team orienteering problem (TOP), a VRP variant that is concerned with routing a team of vehicles
in a network to collect the maximum amount of rewards from demand nodes, see Golden et al. (1987), Chao et al. (1996), Archetti
et al. (2014), Gunawan et al. (2016). But different from a canonical TOP, our problem has the team of vehicles initially located at
multiple depots and the ending depot of a vehicle trip is unspecified; furthermore, the objective function in our model is augmented
with a bin packing type of cost term to model the battery life cycle cost. (3) Our model treats the costs of battery differently from the
literature. Specifically, in addition to capacity constraints, we also explicitly minimize the number of battery charging cycles. This
treatment introduces a bin packing objective term and constraints into the problem. The bin packing problem is a classic -hard
combinatorial problem (Garey and Johnson, 1978), thus its addition to the formulation calls solution approaches that are not readily
available in the TOP literature.

Column generation (CG) is a well-studied approach for solving linear programs that contain a large number of variables
compared to the number of constraints (Nemhauser, 2012). Such linear programs typically arise as the LP relaxation of certain
MIP problems (Barnhart et al., 1998; Lübbecke and Desrosiers, 2005), including the bin packing problem (Vanderbeck, 1999; Aydın
et al., 2020) and the path-based formulation for VRP (Desrochers et al., 1992; Lozano et al., 2016). The application of column
generation has been limited in drone-related optimization problems. For evidence, Otto et al. (2018) surveyed more than 200 articles
(published up to early 2018) on optimization approaches to civil applications of drones, among which only one article, i.e., Mufalli
et al. (2012), was identified to have employed the column generation (or branch-and-price) technique. The problem addressed in
that paper was assigning reconnaissance sensors to different military drones and simultaneously routing the drones to maximize
the mission’s intelligence gain. The role of column generation was to decompose the problem by UAVs and provide candidate
sensor and route combinations on a per UAV basis. Another related work is Riera-Ledesma and Salazar-González (2017), which
used column generation to solve a team orienteering arc routing problem. The CG algorithm started with an initial set of candidate
routes restricted to visit l customers, and the authors particularly investigated the effect of l on the algorithmic performance, based on
benchmark TOP instances (Archetti et al., 2014). Computational results suggested that a more relaxed (i.e., larger) l was preferable
when the instance size was manageable, whereas a smaller l was more suitable for larger instances. Given that the pricing problem
is solved many times in the CG algorithm, accelerating the solution of the pricing problem is a critical aspect for improving the
performance of the CG algorithm (Costa et al., 2019; Desrosiers J., 2005). In the VRP with Time Window (VRPTW) context, the
pricing problem is typically an elementary shortest path problem with resource constraints (ESPPRC), which is NP-hard (Dror, 1994).
Well-known exact algorithms include the labeling algorithm (Feillet et al., 2004) and the pulse algorithm (Lozano et al., 2016).
Recently, Yu et al. (2021) proposed a new enhancement for the pulse algorithm as well as a random coloring method suitable for
parallel implementation. However, the path generation subproblem encountered in our context is different from ESPPRC, thus the
aforementioned algorithms are not applicable. Instead, we develop a randomized greedy procedure for solving it approximately
to expedite the convergence of the column generation algorithm. Despite the algorithmic enhancements and the care taken in the
implementation, the CG-based approaches have been shown to be inferior to the more direct, complete enumeration based approach
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in our computational assessment. While this observation is made only in the application scenario considered in this paper, it may
suggest that the direct approach (i.e., systematically enumerate all columns up front and then solve the set-partitioning or set-packing
MIP model) is worth benchmarking within other work where column generation is focused.

In view of the existing literature, the contribution of the paper consists of (1) a new business model for drone-based shipment
service considering customer bidding, battery capacity and battery life cycle costs, (2) two mixed integer programming formulations
and three different algorithms under the path-based formulation, along with comprehensive computational comparison of these
algorithms, (3) an optimization–simulation framework for assessing continuous operations under the proposed business model, (4)
insights gained on the service operation from the simulated scenarios.

3. Problem description

We consider the following business model in this paper. A drone delivery company aims to perform within-the-hour shipment
of light-weight goods, such as meals, drugs, groceries and other small items from any origin to any destination within its service
region. The service region may span a city, a suburb or an industrial park, etc. Customers can initiate shipment requests at any
time. A shipment request will consist of an origin (pickup) location, a destination (drop-off) location, the estimated weight of the
shipping item and the amount of money the customer would pay for the shipment service. It is assumed that the weight, dimension
and other aspects of the shipping item meet certain criteria for airborne carriage. Within a set amount of time, e.g., five minutes, of
its initiation, each shipment request will be responded with either acceptance or declination. If a request is accepted, a drone will
be dispatched to perform the shipment in the next hour. If a request is declined, then some other form of shipment may be offered
to fulfill it which cannot guarantee the within-the-hour shipment; in this case, the customer may choose to re-submit the request
with an increased bid value in order to be accepted in the next five-minute dispatch interval.

To support the logistics operation, the company has established p drone depots located across the service region and will operate
a homogeneous fleet of K drones in the depot network. The depots provide battery swaps and parking spots for stand-by drones.
We assume that there is unlimited parking space for drones as well as an adequate supply of fully-charged batteries at each depot.
The p depot locations are chosen so as to maximize coverage of the area to enable safe and efficient fleet operations. The depot
location problems are addressed in separate papers, e.g., Liu (2021b, 2022).

In brief, Liu (2021b) aimed to place a given number of depots in a service region so that the distance between any point in the
service region and its nearest depot is minimized; therefore, the battery power reserved for emergency landing would be minimized,
meaning that the proportion of a battery’s capacity available for value-adding operations would be maximized. In a similar vein, Liu
(2022) aimed to place a given number of depots to minimize the maximum distance of an economical delivery trip in which a
delivery vehicle would start from the nearest depot to a demand point, visit the demand point and then return to the second nearest
depot to that demand point. The assurance that the vehicle was able to return to not only the nearest depot but also the second
nearest depot would increase service quality under demand uncertainty. In this paper, we assume that the depot locations have
been determined and fixed.

The most critical resource in drone operations is the battery. Most small and medium sized civilian drones are powered by
LiPo battery packs. Compared to other types of batteries, the LiPo batteries are able to sustain a high current draw needed by the
high-speed electric motors while keeping the voltage relatively stable. However, the amount of energy stored in a battery pack
of a given size and weight is quite limited. As a result, most drones are configured with a battery pack that can sustain no more
than one hour of airborne time. The operational implication is that drones have to repeatedly return to a depot for battery swaps,
i.e., replacing the discharged battery with a fully charged one before embarking on the next flight mission. The swapped-out battery
will be charged at the depot and be swapped onto some other drone in need when it is fully charged.

In addition to having limited capacity, each LiPo battery can withstand only a few hundred charge–discharge cycles (French,
2021; Flynt, 2019), making it a consumable component in the system. While the cost of electric energy is negligible compared to
the energy cost for other means of transportation, the battery units can cost an appreciable amount of money. For instance, a 32 Ah
12-cell LiPo battery pack costs about $1200 (Adorama, 2021). Suppose the battery is able to sustain 500 charge–discharge cycles in
its usable lifetime, then each recharge would account for about $2.4 in the battery’s acquisition cost. In operations, it is therefore
important to have a battery sustain as much value-adding flight distance as possible before it is recharged. On the other hand, given
that a battery was to be recharged, the exact amount of remaining charge in the battery, as long as it is above some minimum
level for safety reserve, would have negligible impact on a LiPo battery’s life cycle cost. Therefore, the operational cost should be
modeled as a function of the number of battery recharges, instead of the amount of energy consumed or the total distance traveled
as in a conventional VRP.

The fleet manager2 needs to periodically (e.g., once every five minutes) commit available drones to outstanding requests, and
plan routes for the committed drones so that they fulfill the assigned requests in the most economical sequence. Specifically, the
inputs to the problem consist of (1) the GPS coordinates of the depots as well as the number of stand-by drones with fully-charged
battery at each depot; (2) the GPS coordinates of the origin and destination of each shipment request, the weight of the corresponding
payload, and the revenue to be earned by performing the requested shipment; (3) the battery capacity and the battery charging cost,
which are constant parameters; (4) the wind speed and direction at the time of operation, which will affect battery consumption
of different flight segments. We enforce that each time a drone lands at a depot, the battery will be swapped and recharged. This

2 The fleet manager represents the decision-making entity, which can be either a human or a computer program responsible for fleet management.
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Fig. 1. Demonstration of the fleet manager’s fleet routing problem.

effectively simplifies the ground support operation — just swap the battery for every returning drone. This practice also ameliorates
the interdependence between successive dispatch cycles. The problem facing the fleet manager is illustrated in Fig. 1(a), a uniformly-
scaled map view of the service region. In the figure, depot locations are marked by blue square markers and the parenthesized
number at each depot represents the number of available drones at the depot. Each shipment order is represented by a black arrow,
originating from the pickup location and pointing to the dropoff location. The number by each arrow represents the shipping fee
(revenue) to be collected from the corresponding customer. The wind vector, i.e., wind speed and direction, is illustrated at the
lower right corner of the map. In this example, there are three depots, five drones (three at Depot 1 and two at Depot 2), and eight
outstanding shipment orders.

The fleet manager is not obliged to fulfill all shipment requests, nor does she have to utilize all available drones. A drone will be
dispatched only when the trip’s revenue (i.e., shipping fees collected from all orders fulfilled in the trip) exceeds its cost; if multiple
plans are available to serve the requests, the one that maximizes the total profit should be chosen. Therefore, it is legitimate to
simultaneously have both unfulfilled requests and unused drones in a dispatch solution. Furthermore, the following assumptions are
made: (a) A drone cannot carry more than one shipping item at a time. In other words, once a shipping item is picked up, the drone
must fly directly to its drop-off location, before returning to depot or flying to the next pick-up location; (b) A drone cannot park
at the drop-off location to wait for order assignment in the next scheduling cycle. Each drone tour must eventually end at a depot;
(c) The battery consumption during takeoff and landing can be location dependent and payload dependent, but it must be known
or calculable at the time of dispatch. Fig. 1(b) demonstrates the optimal solution of the example shown in Fig. 1(a). In the solution
plot, a drone’s trip is illustrated by a series of arrows connecting one another. The following color-code is used to distinguish flight
segments: a green arrow represents a depot-to-order segment, a red arrow represents an order-to-order segment, and an orange
arrow represents an order-to-depot segment. In this example, two drones are dispatched from Depot 2, each serving three orders
and returning to different depots. Two orders are left unfulfilled due to the battery constraints and the profit maximization principle
in the decision-making process, which will be modeled in detail in the next section.

4. Mathematical formulation

4.1. Battery consumption model

The energy required for a drone to fly from point A to point B (denoted below by E⃖⃖⃖⃗AB) is largely determined by the distance,
the wind speed and direction and the payload weight. Zhang et al. (2021) provides an excellent overview of different energy
consumption models for delivery drones. Since estimating battery consumption is not the focus of this paper, we make the following
assumptions to simplify calculation: the same airspeed is used in all flights; vertical ascend/descend flight stages are ignored; the
wind speed and direction is uniform across the service region. Under these assumptions, the energy consumption to fly any trip
segment ⃖⃖⃖⃖⃖⃗AB on a Euclidean plane can be estimated using formula (1).

E⃖⃖⃖⃗AB = WPayload ⋅
‖⃖⃖⃖⃖⃖⃗AB‖

(AS2 − (WS ⋅ sin(∠(⃖⃖⃖⃖⃖⃗AB,WD)))2)1∕2 +WS ⋅ cos(∠(⃖⃖⃖⃖⃖⃗AB,WD))
(1)

where the function WPayload represents the power (in Watt) required for transporting a given Payload weight at a constant airspeed
(denoted by AS), WS is the wind speed, WD is the unit vector representing the wind direction, and ‖⃖⃖⃖⃖⃖⃗AB‖ is the Euclidean distance
between A and B. The effect of wind on energy consumption in this formula is illustrated in Fig. 2. For instance, when the wind
speed is small (e.g., 1 m/s) flying in all directions has a similar rate of energy consumption; in contrast, when the wind speed is
high (e.g., 5 m/s), flying up wind, in this case southwest, costs more energy than flying down wind.
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Fig. 2. The effects of wind on energy consumption demonstrated in a radial plot. The lengths of the vector pointing from the origin O to a point on the colored
contour represents the power consumption for a flight along the vector direction.

Furthermore, we know that each deployed drone must fly a tour that looks like this:
Depot → Pickup 1 → Dropoff 1 → … → Pickup m → Dropoff m → Depot in which at least one Pickup and Dropoff pair (i.e., one

shipment request) must be performed between visits to the starting and ending depots. Therefore, any drone tour must consist of
one Depot-to-Order segment, zero, one or multiple Order-to-Order segment(s), and one Order-to-Depot segment. Let Pj denote the
location of depot j and Oi and Di denote the pickup and dropoff point of the order i, the three types of trip segments and their
battery consumption calculations are listed below.

Type Trip segment Battery consumption
Depot-to-Order Pj → Oi → Di cji ∶= E⃖⃖⃖⃖⃖⃖⃗PjOi

+ E⃖⃖⃖⃖⃖⃖⃗OiDi

Order-to-Order Di → Oi′ → Di′ cii′ ∶= E⃖⃖⃖⃖⃖⃖⃖⃗DiOi′
+ E⃖⃖⃖⃖⃖⃖⃖⃖⃗Oi′Di′

Order-to-Depot Di → Pj cij ∶= E⃖⃖⃖⃖⃖⃖⃗DiPj

By the time routing optimization is to be performed, the battery consumption to fly each possible trip segment is calculable, thus the
relevant cij values are input data to the optimization problem. In this way, we have transformed a seemingly arc routing problem
to a node routing problem.

4.2. Drone routing model: a compact formulation

We formulate the fleet manager’s problem into a mixed integer program by leveraging a conceptual network. The network
nodes are the p depots and the n shipment orders at the time. Each depot node has zero, one or multiple available drone(s) ready
for dispatch; each order node is associated with a revenue to be collected; and the arc between each pair of nodes has a travel cost
in terms of the battery consumption.

Index sets, parameters and decision variables are defined in Table 1. Note that the integer constants K, p and n, which represent
the number of drones, the number of depots and the number of orders, respectively, are used in defining the index sets in the table.

The fleet manager’s drone routing (DR) problem is formulated as follows.
(DR):

Maximize
∑

i∈

∑

k∈

vizik − C
∑

k∈

yk (2)

s.t.
∑

i∈

∑

j∈ ,j≠i

cijxijk ≤ Byk, ∀k ∈  (3)

∑

i∈

xjik = wjkyk, ∀j ∈ , k ∈  (4)

∑

i∈

∑

j∈

xijk = yk, ∀k ∈  (5)

∑

j∈ ,j≠i

xjik = zik, ∀i ∈ , k ∈  (6)
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Table 1
Symbol definition for the drone routing model.

Sets:
 Index set of drones, {1,… , K}

 Index set of depots, {1,… , p}

 Index set of orders, {p + 1,… , p + n}

 Set of network nodes,  =  ∪ 

Parameters:
vi Revenue earned via serving order i, i ∈ O

cij Energy consumption to go from node i to node j, i, j ∈ 

wjk = 1 if drone k is at depot j in the beginning; = 0 otherwise
B Battery’s energy capacity per charge
C Cost per battery charge
Binary variables:

xijk = 1 if drone k visits node i then immediately j in its tour
yk = 1 if drone k is used
zik = 1 if order i is served by drone k

Positive variables:
ti The precedence rank of order i’s visitation (if it is served) among

all served orders on the same tour

∑

j∈ ,j≠i

xijk = zik, ∀i ∈ , k ∈  (7)

∑

j∈ ,j≠i

∑

k∈

xijk ≤ 1, ∀i ∈  (8)

tj − ti ≥ 1 − (n + 1)(1 −
∑

k∈

xijk), ∀i, j ∈  (9)

0 ≤ tj ≤ n, ∀j ∈  (10)

xijk ∈ {0, 1}, ∀i, j ∈  , i ≠ j, k ∈  (11)

yk ∈ {0, 1}, ∀k ∈  (12)

zik ∈ {0, 1}, ∀i ∈ , k ∈  (13)

The objective (2) is to maximize the total profit, which is equal to the total revenue earned from served orders minus the battery
cost of the deployed drones. The first term and the second term of the objective function are the objectives for a team orienteering
problem and for a bin packing problem, respectively. Therefore, the problem is a novel composition of those two types of problems.
The constraints are annotated below.
(3): A drone’s travel distance in a tour cannot exceed the battery capacity.
(4): A drone is deployed if and only if its tour contains one depot-to-order link and the drone must be available at the starting depot.
(5): A drone is deployed if and only if its tour contains one order-to-depot link.
(6): A order is served if and only if there is a link into it.
(7): A order is served if and only if there is a link out of it.
(8): No order can have more than one in-link (or out-link, which is implied by (6)–(8)).
(9)–(10): Subtour elimination constraints.
(11)–(13): Variable type constraints.

5. Path-based formulation and algorithms

In the solution of DR, each deployed drone will depart the depot where it is originally parked, serve one or multiple orders in
sequence, and then land at some depot for a battery recharge. We call the sequence of nodes visited (including the starting and
ending depot nodes) by a deployed drone a path. Most of the constraints in the DR model, including (3) to (5) and (9) to (10),
are used for describing what constitutes a feasible path. Among them, the bin packing constraints (3) and the subtour elimination
constraints (9) are the ones that make the above MIP model extremely difficult to solve. For instance, for a case with n = 20, p = 5,
K = 10 and randomly generated parameter values, it took CPLEX 46 minutes to solve the model. In contrast, when the constraints
(9) are excluded, the solution time is reduced to 6 minutes, and when both (3) and (9) are excluded, the solution time is less than
one second. Of course, the latter two models (with constraints dropped) are not valid.

Another way to formulate the problem is to first enumerate all feasible paths, which can be done separately from optimization,
and then choose to fly a subset of the paths to maximize the total profit. In this way, all the complicating constraints that ensure
path feasibility are offloaded to the preprocessing step; therefore, the optimization problem is greatly simplified.
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To pursue this formulation, let  be a set of feasible paths, S (j) be the set of paths in  which start from depot j, j ∈ ,
and the parameter aℎi be equal to 1 if order i is visited in path ℎ and equal to 0 otherwise, for ℎ ∈  and i ∈ . Thus, the profit
made by having a drone run path ℎ is equal to the sum of revenues earned from all orders visited along the path minus the battery
charging cost of the drone running this path, that is,

vℎ ∶=
∑

i∈

aℎivi − C. (14)

If the fleet manager is confined to selecting drone paths from , then his profit maximization problem becomes the following Path
Selection (PS) problem.
PS():

Maximize
∑

ℎ∈

vℎsℎ (15)

s.t.
∑

ℎ∈

aℎisℎ ≤ 1, ∀i ∈  (16)

∑

ℎ∈S (j)

sℎ ≤ wj , ∀j ∈  (17)

sℎ ∈ {0, 1}, ∀ℎ ∈  (18)

where the binary variable sℎ indicates whether path ℎ is selected in the solution, and the parameter wj is the number of drones
available at depot j, that is, wj ∶=

∑
k∈ wjk.

Let A denote the set of all feasible paths, then DR and PS(A) are equivalent problems. An ostensible challenge in solving
PS(A) is that there are exponentially many elements in A, which, on one hand, are non-trivial to enumerate, and on the other
hand, make the path selection problem a huge, thus difficult-to-solve, MIP. A typical workaround is to solve PS() for a smaller
path set , thus to obtain a lower bound for the original problem, and solve the linear programming relaxation of PS(A) to
obtain an upper bound. Let us denote the latter linear program by PSR(A), which has the same formulation as PS(A) except
that the constraint (18) is replaced by sℎ ≥ 0,∀ℎ ∈ A. The column generation approach can be used for solving PSR(A) without
enumerating all elements in A. It can be proven that the optimal objective value of PSR(A) is no greater than that of the LP
relaxation of (or the root relaxation in the branch-and-bound algorithm for solving) the DR model (denoted by DRR), forming a
better upper bound for the original problem. We omit the proof here since the idea of the proof is straightforward and well known
in the literature — in essence, any feasible solution of PSR(A) can be expressed as a feasible solution to DRR but not vice versa.
The set ∗ of paths generated upon the termination of the column generation algorithm is usually much smaller than A, thus
PS(∗) can be solved quickly to obtain an integer feasible solution.

We explore three approaches for solving PS(A) and compare their performances via numerical experiments in Section 7. The
first approach enumerates all feasible yet undominated paths in A and selects the best paths via solving the PS problem. The
second approach solves PSR(A) using column generation to obtain an upper bound, and solves PS(∗) to obtain a lower bound.
The third approach attempts to expedite the column generation algorithm by substituting a heuristic (hence faster) procedure for
the MIP subproblem in the column generation algorithm. We believe that these approaches are representative of the typical lines
of attack one would employ when facing a set-covering, set-packing or set-partitioning type of problem, therefore the algorithm
designs and computational insights gained herein will contribute new knowledge in a broader context.

5.1. Path enumeration algorithm

The basic approach for enumerating all feasible paths is through breadth-first search (BFS), see, e.g., Chapter 22 of Cormen et al.
(2009). Starting from a depot, a partial path is formed by adding one of the order nodes reachable from the depot. From any partial
path, a new partial path can be formed by appending one of the unvisited yet reachable (from the last node in the current partial
path) order nodes. Each partial path can also be completed into a full path by appending the nearest depot to the last order node.
Here, ‘‘reachable’’ means that the total energy needed upon completing service for an order does not exceed the battery capacity.
An order node is appended to a partial path only if, after its visitation, the remaining battery is sufficient for the drone to fly to the
nearest depot. Yet-to-explore partial paths are held in a queue, and the enumeration process is terminated when the queue becomes
empty.

Factors contributing to the size of the path pool include B, n and p. Generally speaking, p determines the number of search trees
to explore, and B and n affect the depth and width, respectively, of each search tree. Among these factors, B has the most substantial
effect. A greater value of B will give rise to longer paths, and overall, more feasible paths. When a partial path covers three or more
order nodes, it may dominate, or be dominated by, other partial paths that (1) start from the same depot, (2) cover the same set of
order nodes, and (3) visit the same order node in the last step. In this case, the dominated partial paths can be pruned from further
exploration. To see this, consider the following two partial paths, for example.
Partial Path 1: Depot 1 → Order 1 → Order 2 → Order 3
Partial Path 2: Depot 1 → Order 2 → Order 1 → Order 3
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They have the same revenue but different flight lengths (due to different node visitation sequence). Suppose that Partial Path
1 is shorter than Partial Path 2, then any feasible path derived from Partial Path 2 must have a shorter counterpart of the same
revenue derived from Partial Path 1. For the PS problem, paths having the same starting depot and covering the same set of orders
are indistinguishable, and only one is needed in the set  for selection. Therefore, Partial Path 2 can be pruned from the search
tree because all possible paths derived from it will be dominated by some corresponding paths derived from Partial Path 1. Such
pruning opportunities must be exploited methodically in the breadth-first search process.

Algorithm 1 Find all feasible paths starting from a given depot j∗

1: function FindAllPaths(vi, di, Ji, i ∈ ; cij , i, j ∈  ; B; C; j∗)
2: Initialize P, PP, PPL, PPV to be empty lists, l ← 0

3: for i ∈  do
4: if cj∗i + di > B then
5: Continue
6: PP.ap([j∗, i]), PPL.ap(cj∗i), PPV.ap(vi − C), l ← l + 1

7: while l > 0 do
8: PP′,PPL′,PPV′

← empty lists, l′ ← 0

9: SS, SPP ← empty sets; SPPL, SPPP ← empty dictionaries
10: for k ∈ {1,… , l} do
11: ′

←  ⧵ PPk, i ← PPk[−1]
12: for i′ ∈ ′ do
13: if PPLk + cii′ + qi′ > B then
14: Continue
15: cPP ← PPk + [i′], cPPL← PPLk + cii′ , cPPV ← PPVk + vi′ , sPP ← S(cPP)
16: if sPP ∉ SPP then
17: l′ ← l′ + 1, SPP.add(sPP), SPPL.add(sPP:cPPL), SPPP.add(sPP:l′)
18: PP′.ap(cPP), PPL′.ap(cPPL), PPV′.ap(cPPV)
19: else
20: if cPPL < SPPL(sPP) then
21: SPPL(sPP) ← cPPL, l∗ ← SPPP(sPP)
22: PP′l∗ ← cPP, PPL′l∗ ← cPPL, PPV′

l∗ ← cPPV

23: if cPPV > 0 then
24: sPP′ ← S′(cPP)
25: if sPP′ ∉ SS then
26: SS.add(sPP′), i ← cPP[−1], P.ap(cPP + [Ji])

27: PP ← PP′, PPL ← PPL′, PPV ← PPV′

28: return P

Algorithm 1 lists the pseudo code for enumerating all feasible and uniquely distinguishable paths that start from a given depot.
The inputs include the revenue vi, the distance to the nearest depot di and the index of the nearest depot Ji of order i, for all i ∈ ,
the energy consumption cij , for i, j ∈  , the battery capacity B, the battery charging cost C and the starting depot index j∗. The
output is a list P containing all identified paths.

The pseudo code uses Python-like data structures such as lists, sets and dictionaries, with the following shorthand notations:
A.ap(a) appends a new element a to the end of list A; Ak returns the kth element of list A; A[-1] returns the last element of list A;
[a] denotes a list of a single element a; [a,b] denotes a list of two elements a and b; A + B concatenates lists A and B; A.add(a) adds
a new element a to set A (if a already exists in A, then nothing happens); A.add(key:value) adds the key:value entry to dictionary
A; A(key) returns the value corresponding to the key in dictionary A.

Two special functions S and S′ are invoked in line 15 and 24, respectively. The function S(A) adds n + p to the last element of
list A, and returns a set consisting of elements of the resulting list. The special treatment for the last element is to distinguish the
last visited order node from other orders. The function S′(A) returns a set consisting of elements of list A. The flow of the algorithm
is annotated as follows. Lines 3 to 6 enumerate all feasible partial paths that start from the given depot j∗ and visit an order node,
and add the node index sequence, length and value of the paths into the corresponding lists. Lines 7 to 27 process the partial paths
in the list PP until the list is empty. In the process, each partial path in PP is (1) further branched into a number of new partial
paths by appending the next order node to visit, which are temporarily stored in the list PP′, and (2) converted into a full path (and
added to P) by appending the depot closest to the last visited order node. After each round, the list PP′ containing the next-level
partial paths will become the new PP (in line 27), ready for the next round of processing.

In computation, many instances of Algorithm 1 can be run in parallel with each instance handling a different starting depot. The
path lists obtained from different runs can then be combined into one set of paths to serve as input for the PS problem.
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5.2. The column generation approach

Define �i and �j to be the dual variables
3 associated with constraints (16) and (17), respectively, for i ∈  and j ∈ , then the

dual problem of PSR(), denoted by PSR-D(), is written as follows.
PSR-D():

Minimize
∑

i∈

�i +
∑

j∈

wj�j (19)

s.t.
∑

i∈

aℎi�i + �j(ℎ) ≥ vℎ, ∀ℎ ∈  (20)

�i ≥ 0, ∀i ∈  (21)

�j ≥ 0, ∀j ∈  (22)

where j(ℎ) denotes the index of the depot where path ℎ starts.
Suppose that for a given set , we have solved the linear program PSR() (or equivalently PSR-D()), and let �∗

i
and �∗

j
denote

the optimal dual variable values, for i ∈  and j ∈ , respectively, and let �∗ denote the optimal objective value. If we could find
a new path ℎ′ which violates the inequality (20) at the current dual solution, that is, if ℎ′ satisfies

∑

i∈

aℎ′i�
∗
i + �∗

j(ℎ′)
< vℎ′ , (23)

then adding ℎ′ to  and re-solving PSR-D (or PSR) would result in an optimal value greater than �∗, yielding an improved solution.
In order to find such a new path, we can solve the problem

Maximize vℎ −
∑

i∈

aℎi�
∗
i − �∗

j(ℎ)
(24)

s.t. ℎ is a feasible path. (25)

If the optimal value is greater than zero, we have found a new path; otherwise, we can conclude that no path in A ⧵ can further
improve the solution to PSR(), and hence PSR(A) is solved.

To instantiate the path generation (PG) problem, let us define the binary variables

ri = 1 if order i is in the new path, i ∈ 

uij = 1 if the node sequence i → j is in the new path, i, j ∈ 

qj = 1 if the new path starts from depot j, j ∈ 

Then the problem is formulated into the following MIP with respect to these variables.
PG(�∗, �∗):

Maximize
∑

i∈

(vi − �∗i )ri −
∑

j∈

�∗
j qj − C (26)

s.t.
∑

j∈

qj = 1, (27)

∑

i∈

∑

i′∈,i′≠i

cii′uii′ +
∑

i∈

∑

j∈

(cijuij + cjiuji) ≤ B, (28)

∑

j∈ ,j≠i

uij = ri, ∀i ∈  (29)

∑

j∈ ,j≠i

uji = ri, ∀i ∈  (30)

∑

i∈

uji = qj , ∀j ∈  (31)

tj − ti ≥ 1 − (n + 1)(1 − uij ), ∀i, j ∈ , i ≠ j (32)

ri ∈ {0, 1}, ∀i ∈  (33)

uij ∈ {0, 1}, ∀i, j ∈  (34)

qj ∈ {0, 1}, ∀j ∈  (35)

ti ≥ 0, ∀i ∈  (36)

The objective function (26) implements (24) by substituting the definition of vℎ in (14). Note that the variable ri is the counterpart
of aℎi in (24). Constraints (27) to (36) describe the feasibility criteria for the new path. Specifically,

3 For the concept of linear programming duality, readers may consult Chapter 7 of Rardin (1998).
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(27): The path must have a starting depot.
(28): The battery consumption along the path must not exceed the battery capacity.
(29): The path must contain an out-link from any served order.
(30): The path must contain an in-link to any served order.
(31): The link out of the starting depot must point to an order.
(32): The node visitation order in each link must be observed.
(33)–(36): Variable type constraints.

The column generation algorithm for solving PSR(A) is given in Algorithm 2.

Algorithm 2 Column Generation Algorithm

1: Initialize: � ← v, � ← 0,  ← ∅

2: Solve PG(�,�) to obtain optimal solution r∗ and q∗, and optimal objective value !∗.
3: while !∗ > 0 do
4: Create a new path index ℎ′ ← || + 1

5: Create a new parameter vector {aℎ′i}i∈ with aℎ′i ← r∗
i
for each i ∈ 

6: Create a new parameter vℎ′ ←
∑

i∈ vir
∗
i
− C

7: Set j(ℎ′) ← max{j ∶ q∗
j
= 1, j ∈ },  ←  ∪ {ℎ′}

8: Solve PSR-D() to obtain optimal solution �∗, �∗, and optimal objective value �∗.
9: Update � ← �∗, � ← �∗

10: Solve PG(�,�) to obtain optimal solution r∗ and q∗, and optimal objective value !∗.

11: Solve PS() to obtain optimal solution s∗ and optimal objective value �∗.
12: return Selected paths {ℎ ∈  ∶ s∗

ℎ
= 1}, lower bound �∗ and upper bound �∗.

Upon the termination of the algorithm, the best-found dispatch plan is to run each path in the set {ℎ ∈  ∶ s∗
ℎ
= 1} by a drone.

The quality of this dispatch plan is quantified by its total profit �∗ and the upper bound �∗ on the profit. The selected paths in
the PS() solution do not contain information about the visitation sequence of orders and the index of the ending depot. To retain
this information, we can simply record, for each candidate path when it is generated (in lines 2 and 10), the (i, j) pairs, i, j ∈  ,
for which the optimal solution value u∗

ij
in PG(�,�) is equal to 1. Alternatively, the path details, i.e., the order visitation sequence

and ending depot, can be re-optimized by a secondary optimization routine which, for example, attempts to minimize the battery
consumption of the path. Heuristic approaches can be used as well. For instance, when the number of orders visited in a path is
small, complete enumeration can be used to find the optimal sequence; otherwise, a greedy heuristic may be employed. We do not
pursue such adjustments in this work, assuming that the amount of residual charge in the battery after a tour is unimportant.

5.3. A heuristic enhancement to the column generation algorithm

For large instances, the looping process (lines 3 to 10) in the CG algorithm can be time-consuming. The process can be expedited
in two ways: generate the new paths faster, and reduce the number of iterations needed to meet the convergence criterion. In fact,
there is no need to solve the path generation problem exactly, except to prove the optimality of the current solution in the last
CG iteration, and thus fast heuristics can be used in its place. Costa et al. (2019) reviewed a number of pricing heuristics in the
VRP context, ranging from those that tapped into the branch-cut-and-price process for solving the master problem (Pecin et al.,
2017) to meta-heuristics such as the Tabu search algorithms (Desaulniers et al., 2008). Most recently, Yu et al. (2021) proposed an
enhancement to the pulse algorithm (Lozano et al., 2016) and a random coloring algorithm to improve the pricing efficiency. We
note a critical difference between the ESPPRC subproblem in the VRP context and the PG subproblem in our context. Specifically, the
capacity constraint (which establishes an upper limit to the sum of the demands collected along the path) in ESPPRC is agnostic of
the node visitation sequence, which enables various bounding and pruning strategies in the design of exact algorithms. In contrast,
the battery capacity constraint (28) in the PG model does not allow for such a convenience, upholding the strong combinatorial
nature of the problem. The time window constraints that are widely considered in ESPPRC also provide additional opportunities
for search space reduction (Irnich and Desaulniers, 2006; Costa et al., 2019), whereas such constraints are not present in the PG
problem.

We propose a randomized greedy search heuristic intended to quickly find a set of paths, each of which to satisfy (23), so that
these paths can be added to the master set  in lieu of a single ‘‘optimal’’ new path that would have to be found by solving the PG
problem. The algorithm is outlined in Algorithm 3. The idea is to make � attempts, each aiming at constructing a maximal-length
feasible path that is also improving (i.e., having a positive value in terms of the objective function (24)). The parameter � controls
the amount of computational effort allocated to this process. The number of improving paths found by this process may vary, but
so long as one such path is found, the more time-consuming process of solving the PG model can be skipped. On the other hand,
if Algorithm 3 returned an empty set P, then the PG model would have to be solved, to either find a new path or verify that no
improving path could be found (thus terminate the CG process). A faster variant of Algorithm 3 would be a search process that stops
as soon as the first satisfactory path is identified. The benefit for finding and keeping multiple (up to �) improving paths comes from
the fact that more paths (i.e., a larger ) would enable PSR() to approach PSR(A) faster in each iteration, thereby reducing the
iterations needed for convergence. Moreover, a larger  upon the termination of the CG process would enable the final PS() to
find a better feasible solution.
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Algorithm 3 Randomized greedy algorithm for finding multiple new paths

1: function FindImprovingPaths(�i, di, Ji, i ∈ ; �j , j ∈ ; cij , i, j ∈  ; B; C; �)
2: Initialize: P ← empty list, k ← 0

3: while k < � do
4: cP ← empty list, D ← 0, V ← −C, Done ← 0, k ← k + 1

5: while Done == 0 do
6: if cP is empty then
7: Randomly pick a j from , cP.ap(j), V ← −�j
8: ′

← {i ∈  ∶ D + cji + di ≤ B}, Done ← −1

9: if |′| > 0 then
10: Randomly pick an i from ′

11: cP.ap(i), D ← cji, V ← V + �i, Done ← 0

12: else
13: j ← cP[−1], ′

← {i ∈  ⧵ cP ∶ D + cji + di ≤ B}, Done ← −1

14: if |′| > 0 then
15: Randomly pick an i from ′

16: cP.ap(i), D ← D + cji, V ← V + �i, Done ← 0

17: else
18: if V > 0 then
19: i ← cP[−1], j ← Ji, cP.ap(j), Done ← 1

20: if Done == 1 then
21: P.ap(cP)

22: Return P

6. Optimization–simulation approach for studying multi-period operations

In this section, we discuss a number of potential challenges in extending the model to multiple periods, and then propose a
simulation approach to analyzing the continuous business operations that span a long period of time. A case study for the business
model described in Section 3 will be presented in Section 7.3.

Mathematically, a simple extension of the DR model to multiple periods is to add a time index to all decision variables, along
with necessary constraints that link the system states between successive periods. An example of such linking constraints is that the
ending depot of a drone’s tour in period t must be the depot at which the drone is available in period t+1. However, a multi-period
model constructed in this way would not be practical, because it takes varying amount of time for drones to run the delivery routes
and in real operations one cannot wait until all drones have landed to start the next dispatch cycle. Another relevant literature
model is VRP with time windows (VRPTW), which tracks the vehicles’ moving time endogenously. VRPTW is not applicable in our
context either, since the customer orders are not known in advance. In fact, it is common practice in the ride-hailing service (another
form of the on-demand shipment service discussed here) to adopt a short dispatch interval to quickly match the demand and supply
available at the moment, see, e.g., Zhang et al. (2017), Riley et al. (2019), Liu (2021a). We propose to adopt the same method in
real operations.

In order to evaluate the long-term system performance (e.g., service level, profitability, etc.) under the hypothesized setting, we
can use simulation methods. Fortunately, the ability to quickly solve realistic instances of the fleet routing problem by the proposed
approaches enables us to incorporate the optimization model in a high-frequency periodical decision-making process to support
both real-world operations and the simulation study. Moreover, in a simulation model, we have abundant flexibility to model the
time it takes to perform different activities (mainly, the flight time). For instance, the flight time required for a trip segment may
depend on the trip distance, the drone’s airspeed and the wind vector (speed and direction). In addition, random variations can be
introduced as well.

Once time is properly modeled, we will see that the dispatch decision made in a period not only partly determines the problem
faced by the succeeding period, but also affects the resource availability several periods into the future. This is a realistic dynamism
to be expected in real-world operations. It would be tremendously more complex to model such a dynamism together with demand
uncertainties in a global optimization framework. We believe that the proposed division of work between optimization modeling and
simulation modeling offers a practical perspective for analyzing complex business models. The optimization–simulation framework
can help entrepreneurs who are interested in running such a business answer a series of system design questions and perform all
kinds of what-if analyses. When the real-world operations are up and running, the optimization model and its solution methods,
which have gone through thorough validations via simulation, can be directly implemented in practice.

7. Computational and simulation assessments

The proposed algorithms and simulation framework have been implemented into computer programs. In this section, we perform
computational experiments to validate the models, compare the performances and present a simulation case study using realistic
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Fig. 3. The distribution of path length under different battery capacities.

parameter settings. The hardware platform is a Dell Precision Tower 8520 with an Intel(R) Core(TM) i9-9900X CPU @ 3.50 GHz,
64 GB RAM running Windows 10 Enterprise Operating System. All MIP and LP problems are solved using CPLEX 20.1.0.1 (with
default solver options) via GAMS 37.1.0. All algorithms as well as the simulation framework are written in Python 3.9 with the use
of the GAMS Python API. The LP and MIP models in the column generation algorithm have been implemented by way of the GAMS
Model Instance, which allows the model rims4 to be constructed once and the instance data to be updated in-between repeated
solves. In this way, the model construction time is minimized and the successive LP solves can benefit from a warm-start basis. The
source code will be available on the author’s Github page.

7.1. Comparison between different solution approaches

We create various test instances on which to compare the computational efficiency and solution quality of different approaches
for solving the drone routing problem. The service area for these test instances is a 100 x 100 square area.5 In this area for a fleet
of K = 20 drones, we generated test instances with the number of depots p ∈ [5, 10], battery capacity B ∈ [50, 100, 150, 200] and
the number of orders n ∈ [10, 20, 30, 40, 50], one instance for each combination of (p, B, n) values. For all instances, the orders are
randomly generated to have a shipment distance between 10 and 30, a revenue value between $0 and $5 and zero payload weight
(basically, all trip segments have the same power consumption rate per distance traveled). The battery charging cost is set to $2.
For simplicity, wind effect was not considered while calculating the cij values for these instances.

The value range for the battery capacity (i.e., 50 to 200) is selected so that the test instances represent the reality that each
battery charge can at most sustain a handful of shipment assignments. The distributions of the path length in terms of the number
of orders visited under different battery capacity settings are illustrated in Fig. 3. The paths summarized in this figure are generated
by Algorithm 1 at (p,K, n) = (10, 20, 50). In reality, it would be extremely rare for a drone to fly more than five shipment assignments
in a row before a battery recharge, so we believe that the B value of 100 or 150 is practically most relevant.

Each instance is solved using four methods: (1) Solve the DR model directly using CPLEX; (2) Enumerate all feasible paths
(i.e., A) using Algorithm 1 and then solve the PS(A) using CPLEX; (3) Apply the column generation (CG) Algorithm 2; and (4)
Apply CG along with the heuristic enhancement of Algorithm 3, denoted as CGH. The parameter � was set to 20006 in all invocations
of Algorithm 3. A 600-second time limit was enforced for each run. For each of those runs that did not terminate naturally by the
time limit, the best solution upon the forced termination point was reported. For each instance when Algorithm 1 was executed, p
parallel processes, each using a CPU core, were actually invoked. Each process handled the enumeration of paths starting from a
given depot. The path lists from different processes were combined into one (i.e., the set A) upon the termination of all processes,
before the PS(A) solution process started. All invocations of the CPLEX solver were by default single-threaded.

The experiment results are listed in Table 2. For each method, the total computing time (CPU) in seconds and the optimality
gap are reported. For CG and CGH methods, the number of subproblem MIP invocations (nMIP) and the number of candidate paths
in the path pool upon the final PS solve are reported. For the PS method, the total number of unique undominated paths found by
Algorithm 1 is reported under column |A|. The last three columns under the header Clairvoyant, i.e., UB, Opt and Gap, report the
optimal value of PSR(A) found by CG (which is also equal to that found by CGH, and equal to that found by the root relaxation
in the solution of PS(A)), the optimal value of PS(A) found by PS and the relative gap between the two, i.e., (UB - Obj)/Obj,
respectively. These values help reveal how far from the best possible the CG and CGH solutions are.

4 The term model rim is coined by GAMS to mean the data structure instance that holds variables and equations for a problem, see GAMS (2022).
5 The unit of length measurement is omitted intentionally here, which can be flexibly instantiated to represent an area of any size. Other distance-related

parameters, such as the orders’ pickup and dropoff locations and the drones’ flight range (battery capacity), are set in coherence with the area size.
6 The selection of this value was based on trials of different values between 500 to 5000 on a large instance.
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Table 2
Comparison of different solution approaches.

p B n DR PS CG CGH Clairvoyant

CPU Gap CPU Gap |A| CPU Gap nMIP || CPU Gap nMIP |A| UB Obj Gap

5

50

10 0.4 0.000 0.8 0 1 2.7 0.000 2 1 2.6 0.000 1 1 2.75 2.75 0
20 0.3 0.000 0.8 0 5 3.4 0.000 5 4 3.0 0.000 1 4 5.88 5.88 0
30 0.5 0.000 0.8 0 8 3.8 0.000 7 6 3.1 0.000 1 6 5.45 5.45 0
40 0.7 0.000 0.9 0 5 3.8 0.000 4 3 3.0 0.000 1 3 2.48 2.48 0
50 1.0 0.000 0.8 0 6 4.2 0.000 7 6 3.7 0.000 1 6 9.84 9.84 0

100

10 0.3 0.000 0.8 0 16 3.7 0.000 10 9 3.1 0.000 1 13 13.85 13.85 0
20 519.4 0.000 0.8 0 48 4.7 0.000 17 16 3.5 0.000 1 31 23.39 23.39 0
30 600.0 0.148 0.9 0 114 8.1 0.031 25 24 3.4 0.000 1 70 36.95 36.95 0
40 600.0 0.262 0.9 0 161 18.9 0.031 44 43 4.5 0.016 1 88 45.05 44.60 0.010
50 600.0 0.187 0.9 0 219 29.5 0.005 51 50 4.9 0.005 1 129 62.77 62.44 0.005

150

10 27.1 0.000 0.8 0 120 4.0 0.000 11 10 3.9 0.000 1 46 16.95 16.95 0
20 600.0 0.061 1.0 0 649 8.9 0.021 33 32 8.6 0.015 9 200 33.38 32.90 0.015
30 600.0 0.078 1.1 0 2084 21.8 0.056 52 51 23.3 0.013 14 356 50.41 49.88 0.011
40 600.0 0.073 2.2 0 5533 86.6 0.016 77 76 63.2 0.011 20 515 65.43 64.91 0.008
50 600.0 0.069 2.0 0 5927 123.6 0.013 97 96 95.7 0.002 36 556 85.82 85.63 0.002

200

10 3.3 0.000 0.9 0 446 4.9 0.000 19 18 5.8 0.000 5 125 18.95 18.95 0
20 600.0 0.038 1.6 0 5132 13.2 0.025 46 45 19.4 0.005 15 456 36.78 36.60 0.005
30 600.0 0.045 5.3 0 27725 64.9 0.043 77 76 105.5 0.024 48 690 55.57 55.29 0.005
40 600.0 0.051 24.8 0 119042 511.6 0.052 109 108 540.6 0.007 73 858 71.26 71.00 0.004
50 600.0 0.052 25.8 0 108598 600.0 0.046 132 132 600.0 0.011 84 940 92.60 92.40 0.002

10

50

10 0.3 0.000 0.9 0 1 3.1 0.000 2 1 2.9 0.000 2 1 0.00 0.00 0
20 0.4 0.000 0.9 0 8 3.8 0.000 8 7 2.9 0.000 1 7 5.80 5.80 0
30 0.9 0.000 0.9 0 11 3.9 0.000 7 6 3.9 0.000 1 6 8.02 8.02 0
40 0.9 0.000 0.9 0 27 5.3 0.000 14 13 4.3 0.000 2 16 11.47 11.47 0
50 1.2 0.000 0.9 0 13 4.7 0.000 9 8 4.2 0.000 2 8 7.36 7.36 0

100

10 0.4 0.000 0.9 0 40 4.0 0.004 12 11 3.5 0.004 2 14 13.56 13.51 0.004
20 600.0 0.039 1.0 0 201 6.7 0.000 27 26 3.7 0.000 2 56 35.07 35.07 0
30 600.0 0.068 1.0 0 540 12.6 0.000 44 43 5.2 0.000 2 134 50.27 50.27 0
40 600.0 0.104 1.0 0 1165 22.1 0.025 52 51 6.1 0.001 2 203 56.18 56.14 0.001
50 600.0 0.222 0.9 0 675 44.6 0.004 85 84 9.1 0.000 2 212 71.29 71.29 0

150

10 600.0 0.043 0.9 0 205 4.5 0.013 14 13 4.1 0.013 2 36 15.70 15.50 0.013
20 600.0 0.032 1.2 0 1977 8.8 0.049 34 33 8.4 0.012 6 237 43.48 42.94 0.013
30 600.0 0.049 1.8 0 7953 31.9 0.032 71 70 32.8 0.014 22 495 62.01 61.72 0.005
40 600.0 0.096 6.7 0 30923 185.2 0.033 122 121 171.5 0.011 51 691 76.53 76.10 0.006
50 600.0 0.161 4.3 0 15269 346.5 0.014 125 124 302.4 0.004 45 721 97.96 97.60 0.004

200

10 117.8 0.000 1.0 0 775 5.8 0.004 25 24 5.4 0.004 3 99 18.64 18.56 0.004
20 600.0 0.023 2.4 0 13023 13.9 0.009 48 47 30.5 0.009 25 543 46.41 46.29 0.003
30 600.0 0.024 41.7 0 80851 57.0 0.029 89 88 109.1 0.011 56 867 67.07 66.38 0.010
40 600.0 0.059 600.0 0.006 536364 228.9 0.064 146 145 349.3 0.021 98 1030 82.82 82.10 0.009
50 600.0 0.064 36.5 0 274248 600.0 0.037 143 143 600.0 0.011 63 1051 106.11 106.10 0.000

The following observations can be made from these computational experiments.

1. The compact formulation (DR) was the most difficult to solve, having only 16 smaller instances solved within the time
limit. From the solution process we observed that the root relaxation was of low quality and the branch-and-bound process
converged slowly. Therefore, we conclude that the original DR formulation is not computationally viable. The observation that
the column generation algorithm is generally more efficient at closing the optimality gap than the compact MIP formulation
is not surprising, as it has been made in other similar problems, e.g., Faiz et al. (2019) on a variant of the VRPTW.

2. Both variants of the column generation approach, CG and CGH, were able to solve PSR(A) and the final PS() for 38
instances. Comparing CG and CGH, CGH was able to achieve a smaller optimality gap than CG for all cases while consuming
less computing time in most cases. The time saving was attributed to the reduced number of MIP solves (nMIP) needed for
convergence, and the better solutions were attributed to the larger set of paths available for the final optimized selection.
Overall, CGH is an effective enhancement over CG.

3. The path selection (PS) formulation coupled with an exhaustive enumeration of feasible paths turns out to be the most
computationally efficient approach for all test instances, outperforming other approaches by a large margin in both computing
time and solution exactness. The observation that this simple, seemingly brute-force approach so substantially outperformed
the column generation approach is somewhat surprising, as it contradicts the general impression that column generation
is design for, thus effective at, mitigating scalability challenges due to ‘‘innumerable’’ columns in a linear program. The
outstanding performance of the PS approach can be attributed to both the effective implementation of the path enumeration
algorithm (Algorithm 1), its parallel execution and CPLEX solver’s ability to solve large-scale set packing type of MIP models
sufficiently fast.
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Table 3
Comparison of solution approaches on larger instances, at p = 10, K = 20, B = 150.

n PS GC CGH

Enum Solve Total Paths UB LB Time UB LB Time UB LB

10 0.7 0.2 0.9 205 15.50 15.50 6.2 15.70 15.50 7.0 15.70 15.50
20 0.7 0.3 1.2 1977 42.94 42.94 9.3 43.48 41.43 13.9 43.48 42.94
30 0.8 0.5 1.6 7953 61.72 61.72 32.0 62.01 60.11 73.3 62.01 61.44
40 1.2 3.4 6.0 30923 76.10 76.10 181.5 76.53 74.09 240.3 76.53 75.87
50 0.9 2.3 4.0 15269 97.60 97.60 344.2 97.96 96.59 278.3 97.96 97.60
60 4.3 19.3 30.9 149902 118.49 118.49 2530.3 118.83 116.20 3515.5 118.83 118.32
70 5.0 23.2 35.1 138792 137.08 137.08 3457.1 137.33 134.94 3227.8 137.33 136.59
80 3.2 18.2 26.2 105082 158.77 158.77 3600.0 159.38 153.86 3600.0 159.39 157.82
90 8.5 73.2 94.9 274912 182.50 182.50 3600.0 183.07 171.35 3600.0 183.18 180.54
100 20.3 136.5 180.7 474178 200.35 200.35 3600.0 198.89 182.66 3600.0 200.38 195.86
110 21.8 117.8 174.5 665899 232.56 232.56 3600.0 230.87 218.67 3600.0 229.76 222.22
120 22.1 599.3 651.3 620006 238.67 238.67 3600.0 236.34 213.81 3600.0 237.96 232.07
130 32.5 182.8 247.7 673005 249.51 249.51 3600.0 245.38 211.28 3600.0 244.63 237.25
140 50.0 168.7 284.6 1255179 276.35 276.35 3600.0 273.64 245.96 3600.0 272.66 264.19
150 79.3 543.4 727.0 2039987 291.42 291.42 3600.0 281.32 233.24 3600.0 281.25 270.09
160 98.6 365.9 557.8 1808240 282.50 282.50 3600.0 270.18 229.21 3600.0 275.30 267.02
170 103.6 384.3 603.6 2285992 293.37 293.37 3600.0 268.27 230.33 3600.0 282.51 273.87
180 130.7 369.6 618.9 2303002 291.54 291.54 3600.0 203.76 186.65 3600.0 273.31 265.40
190 245.5 1479.4 1962.4 4315542 329.41 329.41 3600.0 255.29 214.36 3600.0 306.57 294.54
200 348.4 759.3 1387.3 5324890 320.43 320.43 3600.0 159.44 138.03 3600.0 299.09 286.64

To better compare how different approaches scale, we also conducted experiments on a series of instances with increasing
numbers of orders n, at fixed values of (p,K, B) of (10, 20, 150). The time limit for each of these runs was set to 3600 seconds. Table 3
lists the results. The total time consumption of the PS approach can be decomposed into three parts: (1) the path enumeration time,
(2) the time taken by Python and GAMS to prepare data for the (potentially large) MIP instance of the PS(A) model, and (3)
the time taken by CPLEX to solve the model instance. Among these components, (1) and (3) are shown under columns enum and
solve, and the total time is under column total (so (2) can be inferred and thus not shown to save space). The upper and lower
bounds (which are both equal to the optimal objective value for each case) are listed for the purpose of comparison with the other
approaches. We can see that, despite the exponentially growing number of paths involved, the PS approach is able to exactly solve
all instances within one hour. In contrast, the CG and CGH approaches were only able to terminate naturally (i.e., complete solving
the PSR(A)) for the smallest seven instances. Even for those seven cases, CG and CGH both left some optimality gap, a phenomenon
inherent to the nature of the column generation heuristics. For the larger cases in which CG and GCH algorithms were forced to
terminate upon reaching the time limit, the values listed under the UB columns are not valid upper bounds; they are listed here to
show relatively how far the forced termination points are to the natural termination points, at which the real UB values must be at
least as big as the UB values listed under the PS approach. By comparing, between CG and CGH, the UB and LB values upon the
forced termination points, we can also glean the advantage of CGH over CG, particularly for large instances. Compared to CG, the
CGH approach is generally able to make more progress toward convergence in a set amount of time, and produce a better feasible
solution upon termination. Nonetheless, both approaches have been dwarfed by the more effective PS approach.

All these comparison results suggest decisively that the PS approach, i.e., parallel execution of Algorithm 1 to generate A and
then solving PS(A) using CPLEX, is the most practical approach for data instances of all sizes.

7.2. Effects of battery capacity on the fleet routing solution

Battery capacity is the most important parameter in the problem, which to a large extent determines the feasible space and,
hence, the computational complexity of the problem. In this section, we experiment different values for battery capacity on the same
test instance, to reveal its effects on the dispatch solution and computing load. We use the input instance of (p,K, n) = (5, 20, 30)

generated in the previous section, and set the drone’s battery capacity B in the set [50, 100, 150, 200, 250] to create five scenarios.
The solutions obtained by the PS approach for these scenarios are listed in Table 4. As seen earlier, a larger battery capacity makes
the problem much harder to solve, as exhibited by the monotone increase in computing time (CPU) and the number of total paths
to select from as the battery capacity increases from 50 to 250.

It is worth comparing the Drones Dispatched and Orders Served across these scenarios. Among the 30 orders, 17 have a revenue
(i.e., vi in the model) greater than $2 (i.e., the battery charging cost), indicating that it is profitable to serve each of these orders by
a separate drone trip, when permitted by the drone availability and flight range. This is what happens when the battery capacity is
small. At B = 50, 6 drones are dispatched to serve 6 orders, leaving no room for consolidation due to the limited battery capacity. On
the other hand, when the battery capacity is large (i.e., B = 250), there is much more room for assignment and routing optimization;
in the end, only four drone trips are needed to serve 27 of the 30 orders, and most of the low-value orders which would be
uneconomical for any dedicated drone trip are now served, thanks to the optimized consolidation of shipment segments into just a
few drone trips. The solutions under B = 50 and 250 are visualized in Fig. 4 for contrast. We can see that the solution on the left
(B = 50 case) looks more like the solution to the problem of matching profitable orders with available drones, while the solution
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Table 4
Effects of the battery capacity on drone routing solution.

B Profit CPU Total paths Drones
dispatched

Orders
served

50 5.45 0.6 8 6 6
100 36.95 0.6 114 11 21
150 49.88 0.9 2084 8 27
200 55.29 3.9 27725 5 26
250 57.68 30.4 255107 4 27

Fig. 4. Fleet routing solutions for an instance with 5 depots, 20 drones and 30 orders. Left: Battery capacity is 50, and 6 drones (three departing from Depot
1, two departing from Depot 2 and one departing from Depot 4) are dispatched to serve 6 orders. Right: Battery capacity is 250, 4 drones (two departing from
Depot 2, one departing from Depot 1 and one departing from Depot 4) are dispatched to serve 27 orders.

on the right (B = 250 case) resembles the solution to a vehicle routing problem which is more challenging from the computing
perspective. It can be anticipated that in practice the drone’s battery capacity is neither too small nor too big. A capacity to sustain
two to four shipments per charge seems to be a reachable goal given the current battery technology. Incidentally, this reality would
leave sufficient room for fleet dispatch optimization without causing excessive computational difficulty.

7.3. Simulation study of the proposed business model

The drone routing (DR) model addresses a temporal cross section (or snapshot) of the business operation. To be useful in practice,
the model must be integrated in a periodical decision-making process to support continuous operations. In this section, we simulate
such scenarios and analyze the performance of the intended business operation under different configurations.

7.3.1. Data and system configuration
The drone being considered for operation is a quadcopter equipped with KDE13218XF-105 electric motors (KDE, 2021) (8.5 kg), a

12-cell 32 Ah LiPo battery pack at 44.4V (Adorama, 2021) (8.5 kg), and carbon fiber airframe and propellers (3 kg). In all, the drone’s
total empty weight is 20 kg and the effective battery capacity is 68160 Watt minutes (assuming 80% of the nameplate capacity is
usable). We assume a constant airspeed of 15 m/s in all flights. For this drone, the relationship between payload weight and energy
consumption is estimated to be the red curve in Fig. 5(a), which is produced based on the motor specification data (KDE, 2021).
For ease of calculation, we use the following fitted regression line (R2 = 0.98, thus quite accurate) to characterize the relationship,

Power (Watt) = 354.4 × Payload Weight (kg) + 3967.5

In windless weather, for example, this drone is able to fly 15 km empty or 8 km while carrying 10 kg payload. A linear relation
between the payload weight and battery consumption rate was also shown to be highly accurate in Torabbeigi et al. (2020). We
have constructed a smaller version of the quadcopter used in this simulation and it is demonstrated in Fig. 5(b).

The service area is the city of Troy, Michigan, which spans an approximately 10 km by 10 km square area. Five depots are located
in the service area, and the fleet consists of 20 drones. In other words, the computational instances encountered in operation will
have p = 5 and K = 20, which, from what has been observed in Table 2, are quite amenable to the computational algorithms.
Indeed, in all simulation runs, the total solution time in each dispatch optimization (using the PS approach) was consistently less
than one second.
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Fig. 5. Quadcopter specification in the simulation experiment.

The shipment orders arrive randomly following a Poisson process with a given arrival rate. For each order, the origin and
destination are randomly sampled within the service region, the payload weight is randomly sampled in the interval [1, 10] kg and
the bid value (revenue to the fleet operator) is randomly sampled in the interval [1, 5] dollars. The drone routing optimization is
run every five minutes. At the time of each optimization run, only the drones that are parked at a depot and only the orders that
have arrived and not served are considered. In order to know which drones are available (i.e., landed) at each depot when the
optimization model is run, we need to keep track of the time taken for a drone to complete an assigned trip. Specifically, the flight
time in each segment of a trip is determined by the trip length, the payload weight and the wind speed and direction, in the same
way as described in the formula (1).

7.3.2. Simulation and result analysis
We consider a business scenario where all arrived orders are eventually served. Specifically, if an order is not served (i.e., assigned

to a drone) in the dispatch cycle immediately following its arrival, it will double its bid value and compete (with other new and
existing orders) for service in the next dispatch cycle, and keep doing so until it is dispatched. Thus, an order’s bid value implicitly
prices the order’s urgency of being served immediately.

We simulate 3 hours of continuous operations in each simulation run. To do so, we generate a sequence of customer orders
according to the Poisson arrival process for a 3-hour period. Then, the dispatch optimization is run periodically at each five-minute
mark along the simulation time line until all orders are served.

The system state evolution across successive dispatch events is explained via Fig. 6, which depicts the first two periods in a
simulation run. First, let us look at the subfigure on the left which shows the system state and the dispatch solution at the end of
the first period (Period 0). By this time, six orders, represented by black arrows, have arrived, and four drones are available at each
depot. The optimal solution is to dispatch three drones, departing from depots 1, 3 and 4, respectively, to serve four of those ready
orders. Trip segments that leave a depot, enter a depot and connect two orders are represented by green, orange and red arrows,
respectively. Now, let us look at Period 1 on the right subfigure. There are nine ready orders, two of which are leftovers from the
previous period, and the other seven are new arrivals during Period 1. Note that the drones available at depots 1, 3 and 4 are one
fewer than there were in the previous period. This is because those drones that were dispatched in Period 0 are still in service by
the end of Period 1. When a drone trip is over (at some future period as determined by the trip duration), the landing depot of the
trip will see an increment in the number of drones available there.

Fig. 7 plots the instantaneous drone and order status over time, at two different order arrival rates, five arrivals per period (or
equivalently one order per minute) and ten arrivals per period. Comparing the two scenarios, we can see that (1) At the arrival rate
of five, the system is stable and the resource is under-utilized, for the dispatched drones are consistently fewer than the numbers
available; (2) At the arrival rate of ten, the system is capacity-constrained and unstable, for the number of ready orders starts to
build up monotonically at around period 27, which indicates that the service rate is lower than the order arrival rate. The dispatch
period 36, the ending period for order arrival, is marked by a vertical dashed line in the plots. Observations like these can help the
fleet manager understand the service capacity and fleet utilization under different hypothesized fleet configurations and uncertain
operating conditions.

For the scenario with order arrival rate of five (i.e., the system is in steady-state), Fig. 8 groups the orders by their dispatch
delay and plots the distribution of the orders’ bid value, shipment distance and payload weight by group. The dispatch delay of an
order is the time difference between the order’s dispatch and arrival events. For example, if an order is assigned to a drone in the
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Fig. 6. System state and dispatch solution for the first two periods in a simulation run. The depots are strategically located in the service region to achieve the
best coverage (Liu, 2022).

Fig. 7. System state evolution under two order arrival rate settings. In scenario (a), the system is under-utilized, thus in steady state; in scenario (b), the system
is capacity-constrained and unstable.

same period as its arrival, then its dispatch delay is 0 period. These plots reveal that the main cause of an order’s dispatch delay is

its low bid value. Since each drone trip costs $3, any order that bids lower than $3 cannot enjoy a dedicated drone trip even when

drones are widely available at depots. Low-value orders may be ‘‘tucked’’ in a multi-legged trip when such an opportunity arises.
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Fig. 8. The relationship between the dispatch delay experienced by an order and the order’s bid value, shipment distance and payload wight.

Fig. 9. The effects of wind on the system’s service level.

Thus, a customer needs to select the right trade-off point between the cost of shipment and the risk of not being served on time.
Apart from the bid value, a long shipment distance and/or a heavy payload also contributes to a longer dispatch delay, though the
relationship is much weaker. All these observations are consistent with what is expected for a drone-based shipment service where
battery capacity and charging cost constitute the main operating constraint and cost.

7.3.3. The effect of wind on service quality
In windy weather, an individual drone’s battery consumption rate will differ by the flight direction. How does the effect of

wind pass on to influencing the fleet level operational efficiency in the hypothesized business scenario? Simulation experiments
can help answer this question. We perform simulation runs by varying the wind speed and direction, and observe shipment delays
experienced by the customer orders. To control for nuisance factors, we generate random shipment orders (at Poisson rate of 3
arrivals per minute) whose OD distances range between 2 km and 3 km (excessively short or long orders are excluded) and set the
payload weight to 5 kg for all orders. Other parameter settings remain the same as given in Section 7.3.2. A 3-hour simulation is run
for each wind scenario, configured with wind speed in the set [0, 1,… , 9] m∕s and wind direction in [South,North]. Note that in the
20 simulation runs the same set of orders (517 in total) were used and the only difference is in wind. The average periods of delay
(over all orders) against the wind situation is plotted in Fig. 9. In mild wind (below 4 m/s), the system’s average performance is
barely affected; on the other hand, when the wind speed exceeds some threshold, the system becomes capacity-constrained, causing
increasing shipment delays. We can conclude that the system operation remains insensitive to the wind effect when the wind speed
is below a certain threshold, and will be increasingly disrupted as the wind speed exceeds this threshold.

Wind direction is not a significant factor in determining the system performance, given that customer orders are random in
shipment directions. However, for an individual order, whether its shipment direction is aligned with the wind direction will affect
its ease of shipment by a drone. Fig. 10 exhibits this correlation under different wind speed. In each radial plot, each line originating
from the origin represents a delayed customer order, with its length indicating the periods of delay and the pointing direction
indicating the order’s shipment direction (pointing from the order’s origin to the destination, up is north). We can see that in mild
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Fig. 10. The effect of an order’s shipment direction on its shipment delay in windy conditions.

wind (i.e., 4 m/s) when the system is not capacity-constrained, the alignment between an order’s shipment direction and the wind
blowing direction (e.g., the south wind blows northward) does not help in reducing the order’s likelihood of delay. In contrast, if
the wind is so strong (i.e., 9 m/s) as to severely impact the system’s capacity and cause lots of orders to queue up, then the orders
that require upwind flight for shipment will generally experience longer delays. In such situations, customers who need upwind
shipment would have to place a higher bid to secure a timely shipment.

7.3.4. Management insights and practical considerations

A dispatch interval of five minutes was considered in the proposed business operation. In practice, there is great flexibility
in choosing the dispatch interval. A practical choice should depend on the actual fleet size, demand arrival rate and customer
experience requirements. In fact, the purported benefit of performing optimized routing is predicated on the abundance of shipment
requests. If shipment requests arise only sporadically such that most drones are available most of the time, then a greedy dispatch
approach might be appropriate, that is, schedule a drone shipment tour whenever the revenue exceeds the cost. On the contrary, if
shipment requests frequently exceeds the capacity of the fleet, the situation should first be mitigated by expanding the fleet size; in
the meantime, a smaller dispatch interval (e.g., 2 minutes) could be used to accommodate the increased system throughput.

To further improve customer experience, a dynamic rerouting mechanism can be implemented to complement the periodic
optimization process. Specifically, each new shipment request is evaluated immediately upon its arrival to determine if it can be
feasibly inserted into an on-going drone tour, instead of being held until the next optimization epoch. Specialized search algorithms
can be developed to handle such evaluation tasks.
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8. Conclusion

Batteries are costly consumables for a commercial drone fleet and it is important to consider batteries’ life cycle costs in fleet
routing decisions. While battery capacity limitation has been extensively addressed in vehicle routing models involving drones, the
charging costs from the life cycle management perspective have lacked adequate treatment.

In this paper, we have presented a new business model for drone-based on-demand shipment services in which battery charging
costs are explicitly considered. We have developed two MIP formulations of the drone routing problem and proposed several solution
approaches. Through performance comparison on an extensive set of experiments, we have found that the path-based formulation
together with an effective path enumeration algorithm is the best solution approach, outperforming the column generation approach
as well as a heuristic enhancement of it by a significant margin. The compact MIP formulation turned out to be the least amenable,
thus should not be used in practical computing. We have furthermore proposed a simulation approach for validating the optimization
model and analyzing the overall performance of the service system under hypothesized settings. Simulation results show that the
selected model and solution approach are more than capable to support at least a startup scale business operation, e.g., one that
operates a fleet of 20 drones to serve a small city. Effects of the battery capacity and wind condition on the fleet’s performance
have been probed, as usage examples of the simulation approach.

Uncertainty about customer demand, resource usage and operational costs often hinders entrepreneurs from turning business
ideas into trial-run operations. The optimization–simulation framework can help to clear some of the uncertainty via supporting
what-if analyses, parameter search and scenario evaluations. Furthermore, once the business model is validated and operational
parameters determined, the optimization model vetted in the simulation phase can be seamlessly ported to the production
environment. We therefore recommend the same approach be applied to assessing other similar business innovations that lack
data from reality in their infancy stage.

In this and most other work that addresses drone routing problems, factors such as the airspace access, air traffic management,
and takeoff and landing capacity at depots have been overlooked. Future work could explore relevant yet manageable models to
capture the effects of these factors on logistic operations. Other lines of future work could include integrating strategic decisions
such as depot location, fleet sizing and battery sourcing with operational decisions of fleet routing, order fulfillment and battery
charging scheduling, and designing better subproblem heuristics to enhance the column generation algorithm.
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